Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Language
Document Type
Year range
1.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.12.02.470917

ABSTRACT

Proteome-wide identification of protein-protein interactions is a formidable task which has yet to be sufficiently addressed by experimental methodologies. Many computational methods have been developed to predict proteome-wide interaction networks, but few leverage both the sensitivity of structural information and the wide availability of sequence data. We present PEPPI, a pipeline which integrates structural similarity, sequence similarity, functional association data, and machine learning-based classification through a naive Bayesian classifier model to accurately predict protein-protein interactions at a proteomic scale. Through benchmarking against a set of 798 ground truth interactions and an equal number of non-interactions, we have found that PEPPI attains 4.5% higher AUROC than the best of other state-of-the-art methods. As a proteomic-scale application, PEPPI was applied to model the interactions which occur between SARS-CoV-2 and human host cells during coronavirus infection, where 403 high-confidence interactions were identified with predictions covering 73% of a gold standard dataset from PSICQUIC and demonstrating significant complementarity with the most recent high-throughput experiments. PEPPI is available both as a webserver and in a standalone version and should be a powerful and generally applicable tool for computational screening of protein-protein interactions.


Subject(s)
Coronavirus Infections
2.
arxiv; 2020.
Preprint in English | PREPRINT-ARXIV | ID: ppzbmed-2002.03173v1

ABSTRACT

As the infection of 2019-nCoV coronavirus is quickly developing into a global pneumonia epidemic, careful analysis of its transmission and cellular mechanisms is sorely needed. In this report, we re-analyzed the computational approaches and findings presented in two recent manuscripts by Ji et al. (https://doi.org/10.1002/jmv.25682) and by Pradhan et al. (https://doi.org/10.1101/2020.01.30.927871), which concluded that snakes are the intermediate hosts of 2019-nCoV and that the 2019-nCoV spike protein insertions shared a unique similarity to HIV-1. Results from our re-implementation of the analyses, built on larger-scale datasets using state-of-the-art bioinformatics methods and databases, do not support the conclusions proposed by these manuscripts. Based on our analyses and existing data of coronaviruses, we concluded that the intermediate hosts of 2019-nCoV are more likely to be mammals and birds than snakes, and that the "novel insertions" observed in the spike protein are naturally evolved from bat coronaviruses.


Subject(s)
Pneumonia
3.
biorxiv; 2020.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2020.02.04.933135

ABSTRACT

As the infection of 2019-nCoV coronavirus is quickly developing into a global pneumonia epidemic, careful analysis of its transmission and cellular mechanisms is sorely needed. In this report, we re-analyzed the computational approaches and findings presented in two recent manuscripts by Ji et al. (https://doi.org/10.1002/jmv.25682) and by Pradhan et al. (https://doi.org/10.1101/2020.01.30.927871), which concluded that snakes are the intermediate hosts of 2019-nCoV and that the 2019-nCoV spike protein insertions shared a unique similarity to HIV-1. Results from our re-implementation of the analyses, built on larger-scale datasets using state-of-the-art bioinformatics methods and databases, do not support the conclusions proposed by these manuscripts. Based on our analyses and existing data of coronaviruses, we concluded that the intermediate hosts of 2019-nCoV are more likely to be mammals and birds than snakes, and that the "novel insertions" observed in the spike protein are naturally evolved from bat coronaviruses.


Subject(s)
Pneumonia
SELECTION OF CITATIONS
SEARCH DETAIL